Affichage des articles dont le libellé est Calcite (mobilisation). Afficher tous les articles
Affichage des articles dont le libellé est Calcite (mobilisation). Afficher tous les articles

samedi 31 mai 2025

Carbonatite bréchique de l'autoroute 5 : 35 ans plus tard

Carbonatite bréchique constituée de calcite, chargée de fragments de gneiss enrobés de mica (phlogopite). Autoroute 5, Chelsea, au nord de Gatineau, Qc. Photo 17 juin 2000.

Elle avait fait l’objet d’une de mes premiers billets de ce blogue(1). Une brèche de calcite chargée de xénolites anguleux. Il était difficile de la rater, la couche de mica qui recouvrait les xénolites chatoyait au soleil dans un virage de l’autoroute 5, à Chelsea, au nord de Gatineau. À mon idée, il devait s'agir d'une carbonatite, une fois écarté l'hypothèse possible, mais moins séduisante, d'une mobilisation du marbre local sous les pressions tectoniques. Quand même, la chose était suffisamment visible pour ne pas échapper à l’attention des nombreux géologues qui étudiaient les carbonatites et fénites de la région, sources potentielles de minéraux stratégiques, tels le niobium et les ÉTR. L'un d'eux, m'apportant son avis autorisé, allait venir m'éclairer sur la chose.

La réponse s'est longtemps fait attendre, presque 35 ans - ma découverte de la chose remontant aux environs de 1990. Elle est venue dans un document paru en 2021(2) ; son titre, peu évocateur, explique que je n'en ai pris connaissance que ces derniers jours. Il s’agit bien d’une carbonatite bréchique, élément d'un ensemble d'intrusions apparentées au nord de Gatineau

  • (2) Marc Legault, Ludivine Da Rosa, Flore Parisot et Robin Potvin, MB 2022-01, Travaux de recherche sur les minéraux critiques et stratégiques réalisés par les stagiaires de l’École de terrain. Min. de l'Énergie et des Ressources naturelles, Québec. La partie qui concerne la région de Gatineau, intitulée « Évaluation du potentiel en éléments de terres rares associés aux dykes de carbonatites du secteur de l’Outaouais », signée L. Da Rosa, commence à la page 24. Lien pour télécharger le rapport.

Voir aussi, sur le même sujet :

  • Bouallal I.A.., Legault M.., Mvondo, H., Cartographie des carbonatites et des fénites au nord de Gatineau et leurs potentiels en éléments de terres rares (ÉTR), Province de Grenville. MB 2025-11, 2025. 61 pages. Lien pour télécharger le document.
  • Legault, M., Gaxotte, T., Dommesent, C., Travaux de recherche sur les minéraux critiques et stratégiques réalisés par les stagiaires de l'École de terrain. MB 2023-01, 2022. 50 pages. La partie qui concerne la région de Gatineau, intitulée « Évaluation du potentiel en éléments de terres rares associés aux dykes de carbonatites du secteur de l’Outaouais », signée T. Gaxotte, commence à la page 204. Lien pour télécharger le rapport.

Voir aussi (billets de ce blogue) :

La suite du billet est la reprise du contenu de mon billet de 2009 sur la brèche de l'autoroute 5, avec des mises au point apportées par la nouvelle documentation. Dans le texte de 2009, je parlais d'une intrusion de calcite, sans employer le mot brèche. De petites retouches au texte sont entre [crochets]. Un document visuel a été ajouté à la fin.

* * *

Une carbonatite, il est peut-être bon de le préciser avant d'e passer à la reprise du billet de 2009, est une roche magmatique composée de carbonates (calcite ou dolomite) ; elle a de ce fait la même composition que les marbres qui, ultimement, sont d'origine sédimentaire. Si ces derniers sont abondants dans la région, les carbonatites sont plus rares et affleurent sur des surfaces restreintes. Les carbonatites peuvent être des sources de minéraux stratégiques (niobium, ÉTR). Celles de l'Outaouais sont trop modestes et trop éparpillées pour être exploitées. Elles sont malgré tout l'objet de travaux d'exploration.

* * *

Intrusion de calcite à Chelsea (Québec), autoroute 5

Billet du 22 nov. 2009

Photo 18. – Vue d’ensemble de l’intrusion [ou brèche] de calcite. De gauche à droite : NW-SE. Autoroute 5, Chelsea, au nord de Gatineau, Qc.

Photos : 17 juin 2000.
Texte retouché le 25 juillet 2012 ; ajouts le 31 mai 2025.

Localisation

SNRC 31G/12. Autoroute 5, Chelsea (Québec), à 2,5 km au Sud de la sortie Tulip Valley ; 45°33'34.58"N ; 75°50'56.74"O.



Photo © Google Earth ; en surimposé, géologie (tirée de la carte SI-31G12-G3P-03B : compilation géologique 1 / 50 000, SNRC 31G12, Ministère des Ressources naturelles et de la Faune, Québec, 2007.) Réalisation de la carte : © Henri Lessard, 2009.
On distingue l'autoroute 5, la rivière Gatineau.
Carré blanc (au bout de l'autoroute, en haut à gauche) : sortie Tulip Valley.
Point rouge : l’intrusion de calcite [brèche] dans le paragneiss (M4), côté nord de l'autoroute 5.

Légende

M3a. – Orthogneiss, migmatite ; M4. – Paragneiss ; M7. – Gneiss à pyroxène ; M12. – Quartzite ; M13. – Marbre (abondant hors du secteur de la carte) ; I1Fa. – Aplite, pegmatite ; I2D. – Syénite ; I2J. – Diorite
Voir Géolo-chronologie pour mise en contexte globale.

Contexte géologique local 

Voir la carte. Bordure du batholite de syénite-diorite de Wakefield mis en place dans des métasédiments du groupe de Grenville (paragneiss, quartzite et marbre) [âgés de plus d'un milliard d'années]. Du granite, des pegmatites recoupent le tout. On trouve dans la région des filons de calcite-apatite-phlogopite (dans les métasédiments), des carbonatites, dont celles du lac Meech, à 7 km au S-W du site, et des fénites (Hogarth, 1997). La syénite et la diorite sont ± gneissiques dans le secteur.

Les roches des collines de l’Outaouais ont été formées à plus de 20 km de profondeur dans un contexte de collisions entre continents et autres compartiments de la croûte terrestre. En même temps que des magmas les envahissaient ou les découpaient, elles ont connu des massages et des triturages, subi des étirements jusqu’à la rupture. Ce dynamisme, figé (pétrifié, dirait-on, si l'on ne craignait pas le paradoxe) depuis un milliard d’années, affleure à présent au grand soleil. 

Découvrir l'Outaouais, c’est un peu parcourir les entrailles (autrefois) agitées de la croûte terrestre...

Intrusion de calcite

Exemple de cette agitation « intestine » : sur l’autoroute 5, à Chelsea (Québec), une masse de calcite large de 15 m s'est ouvert un passage à travers la roche locale (en surface, complexe de paragneiss gris et de granite blanc). Le mouvement d'expulsion vers le haut des fragments des roches hôtes dans une pâte de calcite est saisissant.

Au moins deux épisodes ont été nécessaires pour donner à cette intrusion sa configuration finale : d’abord l’injection d’une calcite grise, « sale », et chargée de xénolites – fragments arrachés aux roches encaissantes –, suivie de celle d’une calcite de couleur rose pâle, nette et libre de fragments étrangers, qui a envahi la calcite grise. Les xénolites, arrondis à anguleux, sont recouverts d’une couche de mica. Dans au moins un cas, le mica, à reflets rouges (hématite ?), est accompagné d’une amphibole verte.

Cette intrusion n’est que la plus spectaculaire d’une série de phénomènes plus discrets. De l’autre côté de la chaussée et plus au nord, toujours sur l'autoroute, des filons de calcite massive d’une épaisseur d’environ 30 cm à 1 m recoupent la syénite (voir photo 23, plus bas).

Photo 10. – Bordure NW de l’intrusion. Calcite « sale » ou noircie par les agents atmosphériques ? Elle remplace un granite blanc (pegmatite) qui recoupe lui-même un paragneiss gris, en haut à gauche (contraste peu marqué sur la photo).

La géologie régionale permet d’avancer trois hypothèses sur la nature de ces intrusions :

Hypothèse 1. — Le marbre, abondant dans la région, et constitué de… calcite, est une bonne source de… calcite !... Par fluage, en réponse aux contraintes tectoniques et torsions plus haut évoquées, il est arrivé que le marbre se soit injecté dans les roches voisines moins ductiles en plissant et disloquant les pans et fragments qu’il emportait (voir par exemple la photo 000522 de cet ancien billet).

Hypothèses 2 et 3 confondues. — Les filons et intrusions variées de calcite (souvent de couleur rose) dont certains ont été exploités pour l’apatite et le mica aux XIXe et XXe siècles, parsèment l'Outaouais et le Sud-Est de l'Ontario. Des carbonatites, roches magmatiques formées de carbonates (calcite ou dolomie), affleurent entre le lac Meech et le lac McGregor (Hogarth, 1997). Sur le terrain, la distinction n’est pas toujours facile à établir entre ces irruptions de calcite qui bluffent parfois même les pros.

[Dans toutes ces hypothèses, l'intrusion de la calcite amène la création d'une brèche par incorporation de fragments de la roche encaissante dans la masse de calcite.]

[Ajout (31 mai 2025) : l'avis de la géologue

Description de la brèche selon L. Da Rosa (sa fig. 20D dans MB2022-01, réf. plus haut) : « Brèche à matrice riche en calcite‐phlogopite montrant des fragments de gneiss fortement altérés en phlogopite dans leurs bordures. Cette brèche est recoupée par un dyke de carbonatite beige et un autre rose. »
Selon L. Da Rosa, les dykes de carbonatites au nord de Gatineau se composent de carbonates (calcite, ±dolomite), de feldspath, d’amphibole et de phlogopite (mica). La phlogopite forme des amas, se concentre aux épontes des dykes et autour d’enclaves de roche encaissante dans les brèches. L’amphibole est une amphibole sodique, soit de la magnésio-arfvedsonite et/ou de la richtérite en baguettes plurimillimétriques de couleur noire bleutée à verdâtre (Hogarth, 1997). ]

Conclusion

Les intrusions de la route 5 sont des phénomènes post-tectoniques : elles recoupent la structure des encaissants (gneissositée), ne montrent aucun signe de déformation et leurs contacts avec les roches hôtes sont nets. Elles ont sans doute pris place dans des fractures préexistantes. Il a fallu au moins deux injections de calcite pour créer la grande intrusion : cette montée par étapes concorde mieux, me semble-t-il, avec l’hypothèse d’un phénomène magmatique (carbonatite). Mais l’évidence plaide contre une origine lointaine (profonde) des xénolites ; la survie de fragments tabulaires, la persistance d’angles et de cassures non émoussés, etc. (Voir photo 12.) La calcite des intrusions proviendrait donc, selon nous, de marbre mobilisé. [À lire le rapport de L. Da Rosa, cette hypothèse serait très discutable. Je maintiens cependant que les xénolites n'ont pas fait beaucoup de chemin avant de s'immobiliser dans la pâte de calcite.]


Référence

Hogarth D.D., Carbonatites, fenites and associated phenomena near Ottawa. GAC/MAC, Joint Annual Meeting, Ottawa, Field Trip Guidebook A4, 1997, 21 p.

12. – La calcite neuve (claire) repousse vers le haut la calcite grise chargée de xénolites. Le xénolite allongé n’aurait pas pu supporter un long transport sans se briser… [Jolie brèche, en tout cas.]



13. – On constate un certain alignement des petits fragments allongés parallèlement à une direction empruntée par un courant de calcite propre.

16. – Calcite « sale », chargée de xénolites. Contact avec roches encaissantes (en haut). [Les fragments semblent ici usés, un peu arrondis ?]



23. – [L’un des] filons de calcite recoupant la syénite [de Wakefield près de la brèche]. Un ciseau (15 cm, le long du contact supérieur du filon, premier tiers à gauche) donne l’échelle. Le contact avec la syénite est souligné de diopside (?) vert. Ce filon contenait de la fluorine violette – aux cristaux quelconques.

Supplément (mai 2025, avec matériel de 2009)




Échantillon de la bordure d'un xénolite de la carbonatite bréchique de l'autoroute 5 à Chelsea (à gauche). Mica (phlogopite), amphibole verte, calcite rosâtre ; pyrite. Les reflets rouge (hématite ?) des cristaux de mica ne sont pas apparents sur la photo.
Petit échantillon. – Calcite à hématite spéculaire. Recueilli dans une poche de calcite (carbonatite) contenue dans un paragneiss vert, sur le bord de l'autoroute 5, à l'ouest de la carbonatite bréchique. 
Échelle. – 2,5 km = 1 cm (sic). La règle photographiée du mauvais côté, est graduée au 1/250 000. 


lundi 2 janvier 2017

Calcite bleue et orangée le long de l'autoroute 5, Chelsea et Wakefield, QC (MàJ)


Intrusion de calcite rose. Wakefield, QC, autoroute 5, juillet 2016.


Localisation

SNRC 31G/12
Autoroute 5, Chelsea et Wakefiled (Québec) ; nouvelle section N.

Note

Le sujet de cette mise à jour - l'origine de filons de calcite recoupant des roches calco-silicatées et des gneiss de l'autoroute 5 à Chelsea et Wakefield, QC - a déjà été l'objet de plusieurs billets. Je n'en reprends pas ici l'exposé, veuillez consulter les billets suivants :
Voir aussi :
  • Billets (4) sur le prolongement de l'autoroute 5 (suivre les liens d'un billet à l'autre à partir de celui du 6 janvier 2010).
Un petit mot cependant sur le contexte géologique ; les roches de Chelsea et Wakefield font partie de la province de Grenville (plus d'un milliard d'années) du Bouclier canadien : batholite de syénite-diorite de Wakefield, métasédiments du groupe de Grenville (marbre et roches calco-silicatée, paragneiss, quartzite). Du granite, des pegmatites recoupent le tout, ainsi que des filons ou dykes de calcite.


Il y a du nouveau dans le dossier des intrusions (filons, dykes ou poches) de calcite orangée dans les roches métamorphiques et plutoniques de Chelsea et de Wakefield, le long de l'autoroute 5.

D'abord, un article parus dans Rocks & Minerals (Bellay, Picard et al., 2016). Il est amusant (de mon point de vue) de voir les auteurs afficher une perplexité au moins égale à la mienne quand à la nature exacte de ces dykes de calcite :


«Some researchers (Sinaei-Esfahani 2013; Schumann and Martin 2016) suggest that the calcite veins and pods at Highway 5 are carbonate intrusives derived from local melting of regional marble related to influx of a mixed crustand-mantle-derived alkaline fluid, a hypothesis propounded to be supported by carbon/oxygen isotope and textural evidence. Although it is strongly possible that some degree of local calcite melting occurs at these metamorphic conditions (see Lentz 1999), the evidence presented in the studies could just as easily be interpreted as metamorphic and/or metasomatic, but this is beyond the scope of this article.» (Bellay, Picard et al., 2016, p. 560.)

C'est, en peu de mots, résumer toute la question. Déjà, d'autres études en étaient arrivés à la conclusion que les filons de calcite étaient des carbonatites dérivées de la fusion du marbre local au contact de fluides magmatiques d'origine profonde (voir aussi Martin et Sinai, 2012 ; de Fourestier, 2008 : billet du 6 nov. 2012). Cependant, la théorie la plus favorisée reste celle d'une origine métasomatique par interaction des paragneiss avec les abondants marbres régionaux. Ces interactions auraient conduit à la formation de roches calco-silicatées (ou skarns). La calcite résiduelle (marbre), plus ou moins mobilisée, se serait injectée ou concentrée en filons ou en masses informes. (Voir billet du 18 févr. 2012.) Selon Sinaei-Esfahani (2013), les filons de l'A5 sont datées de 980-1020 millions d'années.

(Et voilà que je suis en train de faire ce que j'avais justement affirmé ne pas vouloir faire : un exposé du problème. Il est difficile de savoir à partir de quel point les informations cessent d'être nécessaires pour devenir superflues.)

Ensuite, un compte-rendu de conférence (Schumann et Martin, 2016) qui traite d'un marbre bleu (calcite bleue) intriguant (Sinaei-Esfahani, 2013). Le titre de la conférence est sans équivoque : «Blue calcite in the Grenville Province: Evidence of melting» :


«There are indications that marble can melt in a post-collision tectonic environment like that in the Grenville province. Regionally developed temperatures and pressures are estimated to have been at least 750̊C and 7–8 kilobars in the Gatineau Park area, north of Ottawa (Canada). Our attention was focused on occurrences of blue marble along Highway 5, close to Old Chelsea and Wakefield, Quebec.» (Je passe les considérations très techniques pour en arriver à la conclusion des auteurs que le marbre bleu provient d'un «silicocarbonatitic melt of crustal origin».)

Alors, calcite d'origine métasomatique ou carbonatitique ? Dans les deux cas, les marbres locaux apportent l'élément prépondérant : la calcite. Tenter de conclure est au-delà des prétentions de ce blogue...

Et comme ces filons de calcite vieux d'un milliards d'années sont répandus de Mont-Laurier, QC, à Bancroft, ON (billet du 18 févr. 2012), le débat dépasse le cadre des territoires de Chelsea et de Wakefield.


Références

  • Philippe M. Belley, Michel Picard, Ralph Rowe & Glenn Poirier (2016). «Selected Finds from the Highway 5 Extension: Wakefield Area, Outaouais, Québec, Canada», Rocks & Minerals, 91:6, 558-569, DOI: 10.1080/00357529.2016.1217473 Lien : http://dx.doi.org/10.1080/00357529.2016.1217473
  • Dupuy, H., 1989, Géologie de la région de Wakefield-Cascades. Ministère de l'Énergie et des Ressources naturelles, Québec, MB89-18, 1989, 14 pages, avec 1 carte (1/20 000).
  • Fourestier, J. de, Mineralogy of the Autoroute 5 extension, Chelsea, Quebec, Canada, 2008, rapport inédit.
  • Lentz, D. R. 1999. «Carbonatite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting», Geology 27:335–38.
  • Martin, R.F. and Sinai, F. 2012. «Rheomorphic fenite and crustal carbonatites: new complications in the Grenville crust, Old Chelsea area, Quebec», abstract in Geological Association of Canada–Mineralogical Association of Canada, St. John’s 2012, Program with Abstracts, v.35, p.85.
  • Schumann, D., and R. F. Martin. 2016. «Blue calcite in the Grenville Province: Evidence of melting». Abstracts with program, Geological Society of America Annual Meeting, March 2016. Available online: https://gsa.confex.com/gsa/2016NE/webprogram/Paper272356.html.
  • Sinaei-Esfahani, F. 2013. Localized metasomatism of Grenvillian marble leading to its melting. MSc thesis, Department of Earth and Planetary Sciences, McGill University, Montreal. Lien : http://digitool.library.mcgill.ca/thesisfile117148.pdf



Roche hôte recoupée par des filons ou dykes felsiques rouge sombre ou orangés ; le tout est recoupé par un filon-dyke tardif de calcite d'un orangée plus clair (au centre). Wakefield, QC, autoroute 5, juillet 2016.


Mise à jour (7 nov. 2018)



Skarn (ou plutôt silicarbonatite d'origine crustale, pour utiliser la terminologie des auteurs cités) à calcite rose-saumon et apatite verte, mine Yates, près d'Otter-Lake, dans la municipalité régionale de comté de Pontiac, Qc. Photos : Darryl MacFarlane (à gauche) et John Betts (à droite), dans Schumann et Fourestier, 2017.



Nouvelles publications sur le sujet

(Ce qui suit est un résumé, en termes très peu techniques, pour mon usage personnel. Il exprime l'état de ma compréhension des choses ; pour des avis plus autorisés, voyez les travaux originaux - dans « Références », plus bas.)


Les « skarns » - silicarbonatites d'origine crustale dans la terminologie des auteurs - se sont mis en place dans la province de Grenville il y a un milliard d’années (998 et 1015 Ma : datation mine Yates à Otter Lake), durant une période d’accalmie qui a suivi un paroxysme tectonique. Le détachement (délamination) de la partie inférieure de croûte épaissie aurait favorisé une remonté de l'asthénosphère chaude. Le « fluxed silicacarbonatitic melt » à l'origine des « skarns » serait le résultat de la cristallisation de magmas générés par fusion partielle (anatexie) de la base de la croûte résiduelle. Tant le marbre que les gneiss profonds auraient contribué à la génération de magmas carbonatés et silicatés contemporains - dont les résultats sont les « skarns » et les omniprésentes pegmatites granitiques aujourd'hui observés. Les « skarns » ne seraient donc pas des... skarns, du moins au sens strict, c’est-à-dire le résultat du métamorphisme de contact entre un corps carbonaté et une roche magmatique, mais des carbonatites crustales - par opposition aux carbonatites mantelliques. « Rather than being part of the skarn, we interpret the pyroxenite as a cumulate formed of crystals than sank in the silicocarbonatitic melt. » (Martin, Schumann et Fourestier, 2017)


(D’un point de vue strictement personnel, ne tenant pas à m’immiscer dans un débat entre spécialistes, la nature grossière et massive de nombreux skarns (qu'importe le nom qu'on leur donne) et la présence de phénocristaux géants (par ex. d'apatite dans la calcite, voir photo) les rapprochent davantage des roches intrusives filoniennes, comme les pegmatites granitiques, justement, que des roches métamorphiques normales du voisinage, marbre et gneiss. Ces dernières, en effet, sont d’une granulométrie plus fine et d’une structure habituellement orientée (foliée ou rubanée).


Références
  • F. Martin, Robert & Schumann, Dirk & Fourestier, Jeffrey de. (2017). Globules of fluxed silicocarbonatitic melt at Otter Lake, Quebec: A new complication in the Grenville Province. Conference: GAC-MAC Kingston 2017, At Kingston, Ontario, Canada, Volume: Technical Program T2: The Metamorphic Architecture of Orogenic LIEN
  • F Martin, Robert & Schumann, Dirk & Fourestier, Jeffrey de. (2017). THE CLUSTERS OF ACCESSORY MINERALS IN GRENVILLE MARBLE CRYSTALIZED FROM GLOBULES OF MELT. Geological Society of Sri Lanka Public Lecture Series 2017, DOI:10.13140/RG.2.2.16937.85601 LIEN
  • F Martin, Robert & Schumann, Dirk & Fourestier, Jeffrey de. (2017). The clusters of accessory minerals in Grenville marble crystallized from globules of melt. Geological Society of Sri Lanka Public Lecture Series 2017, DOI:10.13140/RG.2.2.16937.85601 LIEN
  • Schumann, Dirk & F. Martin, Robert & Fourestier, Jeffrey de & Fuchs, Sebastian. (2017). Silicocarbonatite melt inclusions in fluorapatite from Otter Lake (Quebec): Evidence of carbonate melts in the Central Metasedimentary Belt of the Grenville Province. Conference: GAC-MAC Kingston 2017, At Kingston, Ontario, Canada, Volume: Technical Program T2: The Metamorphic Architecture of Orogenic Belts LIEN

dimanche 16 mars 2014

Marbre en fusion à Chelsea (autoroute 5)



Photo 1A. Dykes de calcite (rose et orangé) recoupant une roche calco-silicatée (vert : skarn – ou fénite) ; à gauche, en rouge sombre, une intrusion granitique. Des éléments vert sombre semblent voltiger dans la masse plus pâle. Chelsea (Québec), tronçon de l'autoroute 5 en construction, au nord de Tulip Valley, oct. 2008. (Voir photo 1B en fin de billet.)


Note. — Une fausse manœuvre a mis ce brouillon prématurément en ligne. Des retouches viendront.


Résumé

Visite de la section de l'autoroute 5 à Chelsea (Québec) inaugurée en 2009 avec le minéralogiste Jeffrey de Fourestier, en août 2013. Selon les travaux de Fahimeh Sinaei-Esfahani et de Fourestier, les dykes de calcite rose et orangée de l'endroit seraient des carbonatites résultant de la fusion des marbres locaux par des fluides magmatiques alcalins d'origine mantellique. (Voir «Références», en fin de billet)
Contexte géologique
Roches calco-silicatées (skarns) et/ou carbonatites (fénites) dans les métasédiments riches en marbre recoupés par la syénite de Wakefield, province de Grenville du Bouclier canadien (un milliard d'années).
Localisation
Autoroute 5, à Chelsea (Québec) : nouveau tronçon inauguré en 2009, au nord de Tulip Valley.
45.572822,-75.873903
Billets traitants du même sujet ou de sujets connexes
Skarns et carbonatites à Chelsea
«Chelsea : dykes et brèches de calcite», 6 nov. 2012
«Skarns : article recyclé», 16 févr. 2012
«Prolongement de l'autoroute 5, Chelsea (Québec) : vallée du ruisseau Meech (3)», 17 janv. 2010
«Intrusion de calcite à Chelsea (Québec), autoroute 5», 22 nov. 2009
Histoire minière de l’Outaouais
«Les mines (parties I et II)», 3 et 7 mars 2012


Local et lointain

En août 2013, j'ai eu la chance de visiter les tranchées rocheuses du nouveau tronçon (2009) de l'autoroute 5 au nord de Chelsea en compagnie du minéralogiste Jeffrey de Fourestier. Il a été malheureusement impossible de combler en une seule journée toutes les lacunes de mon expertise en minéralogie ; au moins, j'ai pu mieux prendre conscience de la variété des phénomènes qui ont façonné et trituré les roches du secteur et de la subtilité de certaines manifestations qui ont laissé de discrètes empreintes.

Magmatisme, métasomatisme, intrusions hydrothermales, gossans (chapeaux de rouille signalant des minéralisations), lectures de la radioactivité, marbre bleu (unique dans la région, voir photo 2), calcite rose omniprésente, etc. ; le programme a été chargé. Je propose ce coin du Bouclier canadien à qui me supportent pas la monotonie.

Jeffrey a, entre autres, identifié une occurrence d'un minéral radioactif, l'oxycalciobétafite, reconnu d'abord dans des échantillons... lunaires ! (Voir photo 2.) La présence de minéraux radioactifs (rarissimes ou banals) indiquent qu'il y a eu ségrégation, migration et concentration d'éléments. Bref, le métamorphise, très «local», qui a formé les roches non moins «locales» du Bouclier canadien a subi toutes sortes d'influences et d'infiltrations plus ou moins «lointaines» – lire «prodondes».

Les roches des collines au nord de Gatineau (Québec), histoire de bien situer les choses, appartiennent aux Laurentides, partie du Bouclier canadien qui se confond a peu près à la province géologique de Grenville, vieille d'un milliard d'années.

Signalons, pour le site qui nous intéresse, la proximité de larges bandes de marbre ainsi que celle du batholithe syénitique de Wakefield dont la marge E coupe l'autoroute au N et au S du site qui nous intéresse.


Skarns vs carbonatites

Le résultat le plus important des travaux de Sinaei-Esfahani et de de Fourestier a été la reconnaissance de carbonatites* dans les masses et dykes de calcite rose-orangée qui recoupent les roches calco-silicatées, aussi nommées skarns, révélées par les tranchées (voir billet du 16 févr. 2012, lien plus haut ; voir aussi photos 1A-B).

* Carbonatites : roches magmatiques d'origine mantellique formées de carbonates (calcite ou dolomie)

Les skarns sont des roches à forte teneur en silicates de calcium et de magnésium. Plusieurs fois, le blogue est revenu sur l'omniprésente association dans la région des skarns et des occurrences de calcite rose grossière qui les accompagnent. (Voir billet 16 févr. 2012, lien plus haut.)

Ces masses de calcite – pour ne pas autrement les qualifier – se remarquent aisément sur le terrain (voir les photos du billet). D'abord, par leurs teintes, roses ou orangées* ; ensuite, par leur grain, grossier (cristaux atteignant plusieurs cm). Enfin, la «matière» est souvent hétérogène, semée de minéraux étrangers : apatite, mica, fluorine, silicates «verts» (pyroxènes et/ou amphiboles), etc. La calcite survient en filons, déformés ou non, lentilles, masses quelconques, ou passe à un marbre blanc-blanchâtre régulier, autre roche omniprésente dans la région.

* Attention (erreur de débutant) à ne pas confondre ces masses de calcite avec du granite rose ou orangé !...

Les occurrences de calcite rose ont eu leur importance dans le passé ; on les a exploitées pour le phosphate (fluorapatite) et le mica (phlogopite) dès la fin du XIXe s. et les collectionneurs de beaux cristaux continuent d'explorer les halles des anciennes mines de l'Outaouais. Elles font partie de notre histoire. (Voir billets du 3 et 7 mars 2012, liens plus haut.)


Origine de la calcite

Pour expliquer les mobilisations, intrusions ou transformations dont ces masses de calcite ont été l'agent, l'objet ou le résultat, les géologues n'ont pas été en peine d'explications.

Sur le terrain, un indice apparaît à l'évidence : l'association étroite des skarns et des abondants marbres locaux. Plusieurs avancent que les skarns sont des calcaires silicieux métamorphisés ; d’autres (ou les mêmes…) invoquent l'influence mutuelle et diffuse (on dit métasomatisme) de marbres dolomitiques (magnésiens) et de gneiss silicieux durant le métamorphisme*. Rappelons que toutes ces transformations se sont déroulées à plus de vingt km de profondeur : dans ces conditions, les roches sont moins inertes qu'en surface !

* Quelle que soit l'origine de la calcite (CaCO3 ± de magnésium), elle a réagi avec les roches silicatées avec pour résultat la production de minéraux calco-silicatées (le «vert» dans les photos).

La circulation de fluides d'origine métamorphique ou magmatique – dans ce cas, provenant de l'intrusion de granites – aurait participé aux processus ou les aurait prolongés, lessivant les roches ici pour précipiter le carbonate de calcium, le magnésium, le phosphate et le fluor là. Ainsi, entre autres, se seraient formé sur le tard (relativement) les veines de calcite-apatite-phlogopite qui recoupent les skarns…

D'autres géologues, enfin, ont supposé que nous étions en présence d'intrusions de carbonatites, roches magmatiques d'origine mantellique (donc profonde) formées de... carbonates (calcite ou dolomie).

Tout tourne donc autour de l'origine de la calcite rose : calcite «sédentaire» (marbres locaux métasomatisés in situ) ou «migratoire» (magmas de provenance profonde, vecteurs de fluides hydrothermaux) ? L'alternative semble se résoudre, après les travaux de Sinaei-Esfahani et de Fourestier, en faveur des partisans d'une origine exotique, ou profonde, indirecte, de la calcite.

Selon Fahimeh Sinaei-Esfahani et de Fourestier, les dykes de calcite rose et orangée de l'autoroute 5 seraient des carbonatites résultant de la fusion des marbres locaux par des fluides magmatiques alcalins (syénitiques), peut-être associés à l'emplacement de la syénite de Wakefield (voir ce billet) qui coupe l'autoroute au sud et au nord du site considéré.

Donc, la calcite est d'origine locale, et les fluides et magmas qui l'ont mobilisée, d'origine lointaine. De quoi contenter tout le monde.


Explication gigogne

J'avais déjà proposé une explication qui les contiendrait toutes (billet du 17 janv. 2010, lien plus haut) :

Imaginez des influences diffuses entre bancs de roches ; des échanges, pas nécessairement réciproques, par l'entremise de fluides minéralisés (avec peut-être du granite, si vous y tenez, pour alimenter et faire circuler des courants hydrothermaux) ; bref, une chimie complexe à 20 km de profondeur, se déroulant en de multiples étapes, simultanées ou successives, et vous ne serez pas loin de la vérité.

Tout devient simple quand on accepte que c'est compliqué... .


Conclusion

Je n'ai fait ici qu'effleurer le sujet. La liste des phénomènes géologiques et minéalogiques que pourrait illustrer chacun des affleurements du secteur est interminable. Métamorphisme, métasomatisme, magmatisme, fluides hydrothermaux, gossans, molybdénite, brucite, minéraux radioactifs, etc.

Merci à Jeffrey de Fourestier de m'avoir expliqué plus de choses sur la géologie et la minéralogie de ce tronçon de l'autoroute 5 que j'ai pu en retenir (et que je pourrai en exposer ici !...)

L'histoire du site est complexe et s'est déroulé en plusieurs stages ainsi qu'en témoigne la présence de minéraux bien formés (euhédraux) dans des roches autrement fortement déformées et métamorphisées. Je pense, notamment, aux cristaux quartz érodés par les fluides hydrothermaux qui se révèlent ainsi bien «tardifs».


Références

  • Fourestier, J. de, Mineralogy of the Autoroute 5 extension, Chelsea, Quebec, Canada, 2008, rapport inédit.
  • Fahimeh Sinaei-Esfahani, Localized metasomatism of Grenvillian marble leading to its melting, Autoroute 5 near Old Chelsea, Quebec, Department of Earth and Planetary Sciences McGill University, Montreal, 2013. (PDF)
  • Martin, R.F. and Sinai, F. 2012. «Rheomorphic fenite and crustal carbonatites: new complications in the Grenville crust, Old Chelsea area, Quebec», abstract in Geological Association of Canada–Mineralogical Association of Canada, St. John’s 2012, Program with Abstracts, v.35, p.85. (PDF)



Photo 1B. Vue rapprochée de dykes déformés de calcite saumon. Cf. photo 1A, coin supérieur gauche. Chelsea (Québec), tronçon de l'autoroute 5, au nord de Tulip Valley. (Photo oct. 2008.)



Photo 2. Dyke de calcite radioactive recoupant un orthogneiss gris. Le minéral radioactif est l'oxycalciobétafite, rare minéral d'abord identifié dans des échantillons lunaires. Son occurrence à Chelsea est une découverte de Jeffrey de Fourestier. Chelsea (Québec), tronçon de l'autoroute 5, au nord de Tulip Valley. (Photo août 2013.)



Photo 3. De gauche à droite : marbre blanc (qui était originellement jaune, lorsque la tranchée était fraîche, m'a dit Jeffrey), calcite orangée et «roche verte» plissée (identification d'après la photo), marbre bleu et granite rose (d'après mes notes de terrain pour ces derniers). Géologie très bigarrée ! Chelsea (Québec), tronçon de l'autoroute 5, au nord de Tulip Valley. (Photo août 2013.)



Photo 4. Autres intrusion de calcite, plus au sud que celles montrées plus haut. Lentille de calcite à fluorine et phlogopite dans un orthogneiss. Chelsea (Québec), autoroute 5, entre les chemins Old Chelsea et Scott. (Photo juillet 2010.)



Photo 5. Intrusion de calcite transportant des lentilles et masses felsiques (grises et blanches). Chelsea (Québec), autoroute 5, entre les chemins Old Chelsea et Scott. (Photo juillet 2010.)



Photo 6. Masse de calcite claire repoussant une calcite grise chargée de xénolithes. Chelsea (Québec), autoroute 5, au sud de Tulip Valley. (Photo juillet 2000.)

mardi 6 novembre 2012

Chelsea : dykes et brèches de calcite


Autoroute 5, Chelsea (Québec) ; photo Henri Lessard (17 juin 2000).
1. Dyke ou brèche de calcite large de plusieurs mètres recoupant un gneiss gris. Une calcite claire repousse une calcite «sale», les deux variétés portant de multiples xénolites anguleux. Carbonatite ou marbre (deux fois) mobilisé ? Voir cet ancien billet (à une époque, je numérotais les photos de ce blogue, quelle patience j'avais...)
Les xénolithes, anguleux, ne doivent pas provenir de bien loin, en particulier celui, fragile, de forme allongée et effilée. Il a quand même disposé du loisir de développer une bordure micacée noire en réaction à son bain de calcite.


Moment de liesse pour ce blogue.

Enfin, après presque 20 ans de patience et de recherches, je dispose d'un début d'explication sur un phénomène géologique pourtant très courant au nord de Gatineau. Jusqu'ici, j'avais dû me contenter d'informations indirectes ou d'inférences toutes personnelles. (Voir mes billets à ce sujet ; lien et lien.)

Je parle des filons, dykes et brèches de calcite rose à orangée qui recoupent les métasédiments et les orthogneiss de l'autoroute 5 à Chelsea.

(Note. – Ce billet a subi de multiples retouches depuis sa mise en ligne.)


Calcite ubiquiste
Ces intrusions de calcite, omniprésentes, sont les orphelines de la géologie locale. J'avais avancé à l'époque 3 hypothèses (qui ne s'excluaient pas) sur leur nature (ce billet) :

  • 1) Marbre mobilisé. Le marbre, abondant dans la région, et constitué de… calcite, est une bonne source de… calcite ! Par fluage, en réponse aux contraintes tectoniques, il est arrivé que le marbre se soit injecté dans les formations voisines moins ductiles en plissant et disloquant les pans et fragments de roc qu’il emportait. Il s'agit de mobilisations locales. Voir, par exemple, ce marbre à xénolithes dans cet ancien billet : à comparer avec la photo no 1 du présent billet ;
  • 2) Skarns, omniprésents dans la région, résultats de l’interaction de marbres dolomitiques (magnésiens) avec les paragneiss silicieux voisins. Bref, du métasomatisme, ou influences mutuelles locales entre roches adjaçantes, supposant peu ou pas du tout d’apports extérieurs. Voir ce billet ;
  • 3) Carbonatites, rares, mais comme il en existe au lac Meech et au lac McGregor (Hogarth, 1997) ou à Buckingham (Hogarth, 2003). Cristallisation d’un magma composé de carbonates (calcite et/ou dolomie). Dans ce cas, il s’agit d’une roche d’origine lointaine, et même profonde, les fluides magmatiques, contaminés ou non par les marbres qu’ils auront traversés, provenant des couches inférieures de l’écorce terrestre. Voir ce billet, déjà mentionné.

Les marbres mobilisés (hypothèse no 1), habituellement gris, à grain plus modeste que les intrusions de calcite rose, souvent très grossières (cristaux de calcite de plus de 3 à 4 cm ; photos 3A et 3B), ne semblent décidément pas de bons candidats pour ce qui nous intéresse. Les skarns et les carbonatites (hypothèses 2 et 3), se manifestent souvent sur le terrain par la coexistence de calcite rose grossière à très grossière et de minéraux verts (diopside, amphiboles), résultat de l'interaction des carbonates avec les minéraux silicieux des roches encaissantes.


Easton (2012) : syénites de la région de Brudenell (Ontario)..
2. Photos tirées de Easton (2012), légendes adaptées.
A) Filon de calcite grossière rose pâle recoupant une syénite rouge. B) Agrégat de calcite grossière pâle et de feldspath potassique dans la même syénite rouge. C et D) Filon boudiné de calcite recoupant une syénite grise et fragment isolé de feldspath rose dans la même syénite. 
Comparez les photos A et B avec les photos 3A et3B, prises sur le bord de l'autoroute 5. (Voir ce billet.) Comparez aussi les photos C et D avec les photos 5 et 6.
Easton relie des carbonatites et des syénites associées de la région de Brudenell aux carbonatites-fénites étudiées à Chelsea par Martin et Sinai (2012). À juger d'après les photos, les ressemblances sont pour le moins évocatrices... 


Autoroute 5, Chelsea (Québec) ; photo Henri Lessard (7 octobre 2012).
3A. Filon de calcite-quartz-pyrite recoupant un granite à tourmaline qui, lui-même, recoupe la syénite-diorite de Wakelfield.

Autoroute 5, Chelsea (Québec) ; photo Henri Lessard (7 octobre 2012).
3B. Filon de calcite-quartz-pyrite recoupant le même granite qu'en 3A.


Travaux récents
Entre roches présentant un indéniable air de famille (hypothèses 2 et 3), il n'est pas toujours simple de savoir à quoi on a affaire...

Or, voici que je découvre les travaux de deux chercheurs de l'Université McGill sur les «fénites-carbonatites*» de Old Chelsea. Peut-être y verra-t-on enfin clair ?

«We focus here on an unexpected discovery of evidence of fenitization of the regionally developed quartzofeldspathic gray gneiss. This transformation occurs near dikes of orange calcite, which typically have a selvage of tiny euhedral diopside crystals and apatite granules.» (Martin et Sinai ; 2012)

Fénitisation, dyke de calcite orangée, diopside... Avouez que c'est évocateur.

Selon Martin et Sinai (2012), la calcite de ces dyke est intermédiaire entre celle des (abondants) marbres régionaux et des carbonatites d'origine mantellique. Le marbre local aurait réagi (métasomatisme) avec des fluides alcalins pour produire des carbonatites. Dans une perspective plus large, un processus de délamination crustale (vers 1040 Ma**) aurait entraîné la formation de magmas syénitique, granitique et carbonatitique par remontée concomitante du manteau terrestre, plus chaud. On pourrait se demander si le batholite de Wakefield (ce billet) ne ferait pas partie de cette suite magmatique reconnue plus à l'ouest en Ontario par Easton (2012).

À cette étape de l'exposé, il serait inexcusable de ne pas mentionner la suite volcano-plutonique potassique de Robitaille, à Buckingham (Hogarth, 2003), à un peu plus de 30 km à l'est de Chelsea. Les roches de la suite incluent justement des syénites/trachytes*** et une calciocarbonatite. Les analyses datent la suite du Mésoprotérozoïque (1060 Ma).

* Fénite : roche hôte modifiée par diffusion ou imprégnation (métasomatisme) par l'introduction d'une roche ignée alcaline ou d'une carbonatite.
** Ma : million d'années.
*** Trachyte : version effusive (lave) de la syénite.


Échantillon ca 1998, autoroute 5, Chelsea (Québec) ; photo Henri Lessard.
4. Calcite (et/ou dolomite) de teintes variées avec hématite spéculaire. Échantillon provenant d'une poche de calcite large d'environ 1 m installée dans un paragneiss. L'intrusion, en partie lessivée, était bordée de cristaux de quartz idiomorphes de quelques mm pointant vers l'intérieur. Des filons minces de quartz-calcite-pyrite recoupaient le paragneiss hôte.


Skarns ou carbonatites ?
Maintenant que la question de la présence ou non de carbonatites sur les bords de l'autoroute 5 a trouvé une réponse positive, le problème de les distinguer des skarns, tout aussi avérés et répandus à travers une plus vaste région, n'a toujours pas de résolution...

Skarns ou carbonatite, la question a toujours sa raison d'être.

Un billet à venir fera le point sur la question.


Autoroute 5, Chelsea (Québec) ; photo HenriLessard (29 octobre 1999).
 5. Intrusion de calcite à phlogopite et fluorite verte recoupant un orthogneiss. Skarn ou carbonatite ?


RÉFÉRENCES
  • Easton, R.M., «Project Unit 11-004. Geology and Mineral Potential of the Brudenell Area, Northeastern Central Metasedimentary Belt, Grenville Province, with an Emphasis on the Syenitic Rocks», Summary of Field Work and Other Activities 2012, Ontario Geological Survey, Open File Report 6280, p.12-1 to 12-17.
  • Hogarth, D.D., Rocks of the Mason - Buckingham - Mayo Area, with emphasis on Mesoproterozoic igneous types. MRNF, Québec, GM 63238, 2003, 28 p., 1 carte (1/20 000) (31G11).
  • Hogarth, D.D., «Carbonatites, fenites and associated phenomena near Ottawa», GAC/MAC, Joint Annual Meeting, Ottawa, Field Trip Guidebook A4, 1997, 21 p.
  • Martin, R.F. and Sinai, F. 2012. «Rheomorphic fenite and crustal carbonatites: new complications in the Grenville crust, Old Chelsea area, Quebec», abstract in Geological Association of Canada–Mineralogical Association of Canada, St. John’s 2012, Program with Abstracts, v.35, p.85. (Disponible (PDF) par Internet.)


Autoroute 5, Chelsea (Québec) ; photo Henri Lessard (27 mai 2000).
6. Filon de calcite dans un gneiss.


Autoroute 5, Chelsea (Québec) ; photo Henri Lessard (octobre 2008).
7. Skarn, pendant les travaux de prolongement de l'autoroute 5, contenant de la calcite rose et recoupé par un granite rouge brique (à gauche). Voir ce billet.

dimanche 7 octobre 2012

Chelsea : recoupements


Carte : modifiée du MRNF du Québec

Légende
QUATERNAIRE
Q : sable, gravier, silt, till [et argile de la mer de Champlain]

PROTÉROZOÏQUE MOYEN, PROVINCE DE GRENVILLE
I2D : syénite et I2J : diorite (batholite de Wakefield)
I1Fa : aplite, pegmatite
M13 : marbre
M12 : quartzite
M 7 : gneiss à pyroxène
M3 : orthogneiss et migmatite
Astérisque noir (signalé par la flèche) : site décrit.
Trait épais (noir) : autoroute 5
Trait mince (noir) : route 105
Échelle : quadrillage 2 km x 2 km



Aujourd'hui, dimanche de l'Action de grâce, visite non prévue à un granite qui n'avait jamais attiré mon attention outre mesure.

LOCALISATION
SNRC 31G/12
Autoroute 5, Chelsea (Québec), sortie Tulip Valley.


CONTEXTE GÉOLOGIQUE LOCAL
Bordure du batholite de syénite-diorite de Wakefield mis en place dans des métasédiments du groupe de Grenville (paragneiss, quartzite et marbre). Du granite, des pegmatites recoupent le tout. On trouve dans la région des filons de calcite-apatite-phlogopite (dans les métasédiments), des carbonatites, dont celle du lac Meech, et des fénites (Hogarth, 1997). La syénite et la diorite sont ± gneissiques dans le secteur.


 Diorite grise recoupée par un granite rouge. Le grain du granite varie de moyen à grossier (dans ce dernier cas, on parle d'une pegmatite). Des fragments de la diorite sont engouffrés dans le granite. (Photo 7 octobre 2012. Désolé pour la qualité de l'éclairage...)


Relations de recoupement
Mine de rien, c'est la bousculade, presque la promiscuité. Combien de roches se sont disputé cet emplacement ?

Il y a d'abord les métasédiments locaux, non visibles sur les photos ; est venue ensuite la diorite sombre, masse de magma qui s'est installée aux dépens des métasédiments (voir «Note», plus bas). Un granite rouge brique à tourmaline s'est ensuite pointé, découpant la diorite à l'emporte pièce et engouffrant des fragments de celle-ci. Finalement, des intrusions de quartz-calcite-pyrite ont recoupé le granite.

Récapitulons :

Métasédiments + diorite + granite + quartz-calcite-pyrite... 

Nous voilà devant un affleurement organisé en poupées gigognes. La roche est dans la roche qui est dans la roche qui est...

Si tout cela vous laisse de pierre, prendre conscience qu'il n'y a pas que les feuilles des arbres qui arborent un beau rouge en cette saison, le granite aussi peut être d'une couleur splendide. En plus, ce caractère flamboyant a l'avantage de durer toute l'année. Bon, j'avoue que, l'hiver, sous la neige...

D'autres intrusions de calcite, avec ou sans quartz, se trouvent dans le secteur. J'en ai déjà parlées : voyez les dernières photos de ce billet. 


 Détail du granite à tourmaline (minéral noir). Les taches gris clair sont du quartz (constituant du granite, avec le feldspath-K rouge) et le minéral rose pâle est de la calcite (ou dolomite ?). (Photo 7 octobre 2012.)


 Détail du détail ci-haut. Je n'ose pas trop m'avancer quant à l'ordre de cristallisation ou d'installation de tous ces minéraux.


Filon de quartz-calcite-pyrite recoupant le granite rouge. La calcite (couleur crème ici) contient des fragments du granite. Comme le quartz du filon semble identique au quartz constituant du granite (composé de feldspath-K et de quartz), je me demande s'il ne s'agirait pas d'une mise en place tardive des dernières réserves de silice du magma ? Reste à expliquer la provenance de la calcite... D'autres intrusions de calcite dans le secteurs ont déjà été décrites dans ce blogue, certaines associant aussi quartz, calcite et pyrite. Sujet à développer... (Photo 7 octobre 2012.)


Détail de la photo précédente. On remarque une «lamination» dans le quartz, parallèle au bord du filon. La pyrite (éclat métallique, dans la calcite crème) est bien reconnaissable.  


Autres intrusions de calcite dans le secteur
(Voir ce billet.)


Calcite claire repoussant une calcite grise chargée d'impuretés, les deux variétés portant de multiples xénolites. Chelsea, autoroute 5. Voir cet ancien billet. Photo (à l'époque, je les numérotais, quelle patience j'avais...) 17 juin 2000.  


 Filon de calcite à fluorine violette recoupant un gneiss (syénite ?). Un liseré de minéraux formés de l'interaction de la calcite avec la roche hôte (diopside ?), souligne les bords du filon. Voir cet ancien billet. Photo 17 juin 2000.


NOTE
Selon la carte reproduite plus haut, la diorite (I2J) affleurerait au SE et au NE du site décrit ici et la roche en place serait de plutôt une syénite (I2D) dont des variétés grises existent dans la région. Les cartes géologiques n'étant pas toujours exactes au mètre ou à la dizaine de mètres près (les affleurements le long de la A5 n'existaient pas lorsque la carte qui a servi à l'élaboration celle utilisée dans ce billet a été dressée ; voir Béland, 1977), je crois qu'il s'agit plutôt de diorite. Mais diorite/syénite gneissique et paragneiss ne sont pas toujours faciles à distinguer...


TRAVAUX CITÉS
  • BÉLAND R., Région de Wakefield : rapport final. MRNQ, DP-461, 1977, 91 p., avec une carte (1/63 360).
  • HOGARTH D.D., Carbonatites, fenites and associated phenomena near Ottawa. GAC/MAC, Joint Annual Meeting, Ottawa, Field Trip Guidebook A4, 1997, 21 p.
  • Ministère des Ressources naturelles et de la Faune, Québec, Compilation géologique - WAKEFIELD, carte CGSIGEOM31GC011, 1/50 000 (SNRC 31G12)

jeudi 16 février 2012

Skarns : article recyclé


Skarns, veines et filons

Texte rédigé pour le défunt Bulletin du CMO (Club de minéralogie de l'Outaouais) vers 1997. À cette époque, j'avais la veine pédagogique beaucoup plus affirmée qu'aujourd'hui. Je dépensais beaucoup d'efforts à être bref, clair, exhaustif et compréhensible. Très rapidement, je me suis rendu compte que, sans un peu de bonne volonté de la part du lecteur, tout ce travail est peine perdue !... Je republie ce texte, avec quelques retouches, même s'il contient des redites par rapport à ce blogue (voir par exemple ici et ).


L’Outaouais est vieux, très vieux. Pensez, les roches et minéraux qu’on y trouve ont toutes les chances d’être âgés de plus d’un milliard d’années (qu’ils ne paraissent pas, avouez-le !)

La plupart des sites explorés par les collectionneurs et les prospecteurs dans la région se nichent dans des roches reliées à une période particulière de l’histoire du continent. Il s’agit des veines de fluorite-apatite-calcite et de leurs roches hôtes privilégiées, les skarns.

C’est dans ces veines et leurs environs que s’est concentré l’essentiel de l’activité minière de l’Outaouais à la fin du XIXe siècle et au début du XXe siècle. On les a fouillées pour en extraire de l’apatite, de la phlogopite et de la molybdénite. Dans les années 1950, on a espéré y exploiter des minéralisations radioactives (uranium, thorium, etc.) (1). Tous ces gisements n’ont plus de valeur économique (quoique, pour ce qui est de l’uranium, la question, au grand dam de plusieurs, se pose à nouveau...), mais pour les collectionneurs de minéraux et les géologues, ces roches conservent leurs attraits.

(1) Tous les skarns ne sont pas nécessairement porteurs de minéraux radioactifs, lesquels ne se confinent pas aux skarns, mais peut être aussi associé à des pegmatites (granite grossier) blanches. Mais toutes les pegmatites blanches ne sont pas pour autant porteuses de minéralisations radioactives...

Petit lexique minéral avant d'aller plus loin
APATITE (n. f.) • Phosphate de calcium comprenant du fluor et du chlore. Les apatites de la région de Gatineau sont des fluorapatites. Source de phosphate (engrais, industrie chimique).
FLUORITE (n. f.) • Fluorure de calcium. Fondant (acier, aluminium, verreries et céramique) ; industrie chimique ; optique. Uniquement recherchée par les amateurs de beaux cristaux dans la région.
PHLOGOPITE (n. f.) • Silicate ; variété de mica magnésien. Isolant thermique et électrique – peintures, panneaux de gypse, ciments, etc. – lunettes de poêles et fourneaux (autrefois).
MOLYBDÉNITE (n. f.) • Sulfure de molybdène ; minerai de cet élément. Aciers réfractaires ; industrie chimique.


Carte 1. – Géologie simplifiée du sud-ouest du Québec et de l'est de l'Ontario.
C'est dans la CCM (voir texte) que l'on retrouve les skarns et les veines de calcite.
Carte Henri Lessard, 1997


Quelques repères géologiques et chronologiques
Les skarns et les veines à fluorite-apatite-calcite (veines de calcite à partir d'ici) affleurent dans une partie du Bouclier canadien que l’on nomme la Province de Grenville, plus précisément dans la CCM (Ceinture centrale des métasédiments), une division de la Province de Grenville (voir carte). (Ne cherchez pas cet acronyme dans Internet : celui-ci, CMB, pour Central Metamorphic Belt, est quasiment le seul usité par les géologues.)

Remontons dans le temps, pas trop loin s’il vous plaît : le petit milliard d’années évoqué plus haut suffira.

À cette époque, la Province de Grenville en était au terme d'une longue suite d’événements qui s'étaient succédés durant 300 millions d’années. Des continents et des arcs insulaires s’étaient télescopés et empilés pour édifier une chaîne de montagnes, aujourd’hui érodée jusqu’à la racine, mais qui devait se comparer altitude et en ampleur à l’actuelle Himalaya.

La CCM constitue un collage de terranes volcano-plutoniques et sédimentaires métamorphisés (2) durant l’orogenèse grenvillienne (3). En parcourant les collines de l’Outaouais, nous «marchons» en fait à 20 ou 30 km sous terre : c’est à cette profondeur que les roches du paysage se sont formées. On peut imaginer l'ampleur du travail de l’érosion à la quantité de rocs enlevés pour que ce sous-sous-sol devienne le sol.

Les veines de calcite et les skarns sont le résultat de processus qui se sont déroulés à ces profondeurs, sous des pressions énormes, à des températures qui ont pu atteindre 670° C.

(2) Le métamorphisme est la transformation d’une roche à l’état solide (sans fusion), lorsque soumise à des conditions de pressions et /ou de températures nouvelles. Par exemple, les actuels marbres de la CCM sont d’anciens calcaires, et les paragneiss sont des shales et des roches argileuses métamorphisés.
(3) Orogenèse : édification des chaînes de montagnes.

Entre plusieurs mots...
L'origine des veines de calcite et de leurs roches hôtes ont fait l’objet de débats qui durent encore. Les roches hôtes ont été désignées sous des noms variés, skarns, pyroxénites, ou roches calco-silicatées (RCS).

Ce dernier terme résume bien leur composition, dominée par les silicates de calcium (et de magnésium) tels le diopside ou l’actinote. Pour le reste des ingrédients, farcissez de phlogopite, scapolite, titanite, apatite, calcite et pyrite, et saupoudrez de molybdénite et de pyrrhotite. Les RCS peuvent renfermer des ségrégations granitiques pegmatitiques. Certains skarns (entre plusieurs mots, adoptons celui-ci, le plus court) se distinguent par leur teneur en minéraux radioactifs, dans la région d'Otter Lake, dans le Pontiac, par exemple. Chez d’autres, ces minéraux sont absents.

Le métasomatisme expliqué
On observe que les skarns longent de façon concordante les marbres et les gneiss et qu’ils sont généralement associés de façon étroite aux premiers (voir carte 2). Il existe tous les cas de transition entre les skarns, les marbres chargés de silicates de calcium et magnésium et les marbres plus ou moins purs.

Les skarns présentent un aspect rubané ou massif et leur grain est moyen à très grossier. Tout comme les marbres, roches particulièrement ductiles, ils ont réagi de façon plastique aux pressions tectoniques et se sont injectées par des failles dans les roches environnantes. Dans le détail, à l’échelle de l’affleurement, les skarns montrent des variations de texture, de granulométrie et de composition parfois déroutantes (photos 1 et 2).



Photos 1 et 2. – Skarns (larges vues)
Diverses teintes de vert : skarns ; rose : filons et masses de calcite ; rouge vin : granite. Les parties claires (gris-vert) des skarns comprennent de la calcite grise (marbre), mais il est difficile sur photos de préciser les contours des lithologies. On peut admirer la sinuosité des lignes et l'aspect souple des contacts, ou demeurer longuement perplexe devant ce méli-mélo.
Autoroute 5 au S de Wakefield (Qc). (Photos, oct. 2008, déjà publiées dans un ancien billet.)


On suppose que les skarns se sont constitués par des réactions de métasomatisme entre des marbres magnésiens silicieux (dolomies impures) et des gneiss durant le métamorphisme régional. Marbres et gneiss auraient échangé des éléments qui se seraient diffusés à travers les roches, par une mixture de fluides, d’éléments volatils et d'atomes nomades (vous venez de lire une sorte de définition du métasomatisme). Dans ce bain de fluides et de minéraux, les gneiss ont fourni le silicium, l’aluminium, le sodium et le potassium, tandis que le calcium et le magnésium étaient déjà disponibles in situ, dans les marbres dolomitiques (4).

(4) Précisons pour la clarté de l'exposé qu'un marbre est constitué de calcite (carbonate de calcium). Avec un peu de magnésium (Mg) dans la formule, on obtient de la dolomite (et donc, du marbre dolomitique). Les marbres de la région (dolomitiques ou non), le plus souvent blancs ou gris, ont un grain réduit comparé à celui, grossier, des filons de calcite rose.

Certains géologues affirment que ce «bain» résulte plutôt d'une interaction complexe entre les marbres et des pegmatites. En plus de «skarnifier» les marbres (les pegmatites apportant le silicium, l'aluminium, etc.), cette interaction aurait saturé les fluides hydrothermaux accompagnant les pegmatites en carbone et calcium ; ces fluides auraient pu ensuite créer les accumulations de calcite rose dans le skarn lui même, ou le déborder et migrer plus loin, dans d'autres milieux (photo 5).


Carte 2. – Intrication des marbres et des skarns à Cantley (Qc), au N de Gatineau.
Pas d'inquiétude : les skarns de ce secteur ne sont pas porteurs de minéraux radioactifs...
«Undivided Metamorphic Rocks» : gneiss et granites, principalement.
«Partridge Lake» : lac à la Perdrix.
Carte tirée de Hogarth (1988).


Veines, dykes et carbonatites
Il suffit qu'une veine de calcite affleure pour qu'accourent les collectionneurs de minéraux. On a aussi appelé ces veines, qui se réduisent parfois à des masses irrégulières, filons-dykes (veins dykes) pour souligner leur caractère intrusif et souvent discordant dans les roches encaissantes. Elles peuvent atteindre plusieurs centaines de mètres de longueur par quelques mètres en largeur. C’est de ces veines et de leur voisinage que provient l’essentiel de l’apatite et de la phlogopite extraites autrefois dans la région. Elles restent des sites de choix pour la collecte de beaux minéraux. L’apatite, de couleur rouge ou verte – une fluorapatite en fait – forme des cristaux idiomorphes (5) de quelques cm à plusieurs dm. À certains endroits, des livrets de phlogopite idiomorphe qui se mesurent normalement en centimètres, ont atteint 1,5 m de large.

(5) C’est à dire «bien formés». À l’inverse, un cristal dont les contours sont quelconques et qui n’a pas développé ses formes propres est dit xénomorphe («formes étrangères»).


Photo 3. – Skarn
Skarn (bleu gris) recoupé de granite (rouge sombre), de calcite rose (en bas et à la gauche du centre) et d'apatite turquoise (peu perceptible ici, voir photo suivante).
Chelsea, Qc (oct. 2008).

Photo 4. – Skarn (détail)
Calcite rose et apatite turquoise. Masse blanchâtre et filons blancs : granite ?
Chelsea, Qc (oct. 2008).


La structure de ces veines se construit selon une zonation concentrique : des cristaux de diopside se projettent à partir des parois; suivent des couches de phlogopite et de calcite puis vient au centre un noyau de calcite-fluorine où sont épars des cristaux de phlogopite et d’apatite (6). La trémolite-actinote est associée au diopside. La liste des minéraux accessoires est la suivante : barytine, fluorine, microcline, molybdénite, pyrite, scapolite, titanite et tourmaline.

(6) Tout ceci, d'après les «textes» ; sur le terrain, la réalité m'a toujours semblé plus complexe et plus inventive (Voir photo 4.)

Il arrive que les veines passent à des marbres ordinaires par réduction de la taille du grain et par décoloration de la calcite. Leur existence suppose un apport en certains minéraux, outre ceux déjà évoqués, le fluor par exemple, nécessaire, avec le phosphate, au développement des cristaux de fluorapatite.

Des géologues considèrent que certaines veines de calcite seraient des carbonatites, c.-à-d. des roches ignées composées en majeure partie de carbonates (comme d'ailleurs il en existe dans la région).

Le débat n'est pas clôt. La question est de savoir si les fluides qui ont mené à la formation des veines de calcite sont les mêmes qui avaient auparavant participé à la création des skarns, ces premières étant manifestement tardives par rapport à ces derniers qu'elles traversent au mépris de leur fabrique (veines discordantes, voir carte 3).

Dates
Une limite supérieure de l’âge des skarns et des veines de calcite est donnée par celui du métamorphisme (1185 millions d’années dans la région de Mont-Laurier), une limite inférieure par l’âge minimun de l’intrusion des pegmatites et des carbonatites (près de 1030 millions d’années pour les une et les autres). Il s’agit là d’une marge confortable, marge d’incertitude ou marge d’erreur, comme il vous plaira de la considérer.


Photo 5. – Veine de calcite à phlogopite et fluorite verte recoupant un orthogneiss :
preuve que ces intrusions de calcite débordent des skarns auxquels on les associes habituellement.
Chelsea (1999).


Hier et demain
Les gisements associés aux skarns et aux veines de calcite se caractérisaient par leur taille modeste (à l'échelle mondiale) et leur dispersion. Ceci, joint à leur contours imprévisibles, explique qu'ils aient été abandonnés peu à peu, parfois dès le XIXe siècle pour les mines d'apatite. La dernière mine de mica de l'Outaouais (la mine Blackburn de Cantley, un moment la principale du Québec) a été fermée en 1964.


Carte 3. – Mine Blackburn de Cantley (dite aussi mine Vavasour, Gemmill et Nellis), Qc.
En activité de 1878 à 1964. Elle est située à l'W du territoire représenté sur la carte 2
La «Roche à silicate calcique» correspond aux roches calco-silicatées de notre texte (skarns).
Les «veines de [calcite] à mica et apatite» sont numéroté de 1 à 8 sur la carte. De direction NE-SW à NNE-SSW, elles recoupent le plan de foliation des roches de même que les contacts lithologiques et se prolongent hors du skarn jusque dans le gneiss à biotite. 
Carte tirée de Hogarth et al. (1972).


Aujourd'hui, si les prospecteurs et les compagnies minières font à nouveau les yeux doux à notre région, cherchez la cause du côté de l'augmentation du prix de l'uranium (dans les skarns, veines de calcite et des pegmatites) et des terres rares (ces dernières étant associées à des carbonatites). Là encore, la petite taille des gisements, leur faible teneur et leur dispersion cause problème : en compliquant la découverte de gîtes exploitables (du point de vue des compagnies minières), en éparpillant la prospection sur un large territoire (du point de vue des habitants du dit territoire)...


RÉFÉRENCES
  • Hogarth D.D., 1988 — «Chemical composition of fluorapatite and associated minerals from skarn near Gatineau, Québec.» Mineralogical Magazine ; vol. 52, p. 347-358.
  • Hogarth D.D., Moyd L., Rose E.R., Steacy H.R., 1983 — Localités minéralogiques classiques en Ontario et au Québec. CGC ; rapport divers 37, 84 p.
  • Hogarth D.D., Rushforth P., 1986 — Selected mineral localities in the Precambrian north of Ottawa. GAC/MAC/CGU, Joint Annual Meeting, Ottawa, 1986, Field Trip Guidebook 9B, 23 p.
  • Hogarth D.D., Moore J.M., dans : Baird D.M. (compil. et édit.), 1972 — Géologie de la région de la Capitale nationale. Commision géologique du Canada, livret guide bilingue, 24e congr. géol. internat., Montréal, excursions B23 à B27, 2 fois 36 p.
  • Lapointe, S., Gauthier, M., Nantel, S., 1993 — Étude d’indices d’uranium, de thorium et de molybdène dans la région de Maniwaki - Grand-Remous. MERQ, MB 93-68, 102 p.
  • Lentz D.R., 1991 — U-, Mo-, and REE-bearing pegmatites, skarns and veins in the Central Metasedimentary Belt, Grenville Province, Ontario. GCA/MAC/SEG; Joint Annual Meeting, Toronto 1991, Field Trip Guidebook A9, 16 p.
  • Shaw D.M., Moxham R.L. et al., 1963 — «The petrology and geochimistry of some Grenville skarns – Part I-II.» Canadian Mineralogist ; v. 7, p. 420-442 et 578-616.